OPC Alarms & Events Client ActiveX Control

Following is a concise user’s manual for the operation of the OPC A&E Client OCX, (AE_Client), control

I. Overview

II. AE_Control Description

III.
AE_Control Method Reference

IV.
Visual Basic Example

OPC Alarms & Events Client OCX Overview
AE_Client.ocx contains a 32-bit custom control, which allows Visual Basic and other OLE Container applications to quickly, and easily access data from any OPC Alarms & Events Server. Methods exist within the control to allow the controlling application to establish a DCOM connection to an OPC A&E Server located on the local or on a remote machine The application may subscribe to messages from the server and configure filters to selectively receive those of interest. The AE_Client control takes care of all DCOM interaction with the server and allows the application design to concentrate on usage of the data rather than acquisition.

This operators manual should be used as an appendix to the OPC Alarms & Events Specification available from the OPC Foundation, (www.opcfoundation.org). The A&E Specification provides detailed information concerning the capabilities and usage of an A&E server that is not duplicated in this manual.

Information contained herein is specific to the WinTECH Software Design ActiveX control and is better utilized with a good understanding of the capabilities of the underlying OPC technology.

Distribution

The AE_Client control is distributed by WinTECH Software Design as a time-limited demo control that allows you to freely trial the operation before purchasing a developer license. The demo control may be integrated with Visual Basic to build operational A&E Client applications that run for 30 minutes at a time. During this 30-minute trial, the control is fully functional and the application has full access to one or more connections to various A&E Servers. At the end of 30 minutes, the unlicensed control will stop communicating with the server(s) and the application will have to be restarted to begin another 30-minute communication period. Purchasing a license for the control will remove all time restrictions and allow the control to be distributed with the application in a run-time environment with no time limits and no additional royalty or licensing payments.

RegSvr32

RegSvr32.exe is a DOS application supplied by Microsoft for making additions and changes to the Windows Registry. Before the AE_Client control can be used by an application it must be properly installed into the Registry. To do this, execute RegSvr32.exe and supply the full path name to the control as an argument. The following command line shows how to register the AE_Client control, (assuming the file is contained in the C:\WINTECH directory):

Regsvr32 c:\wintech\AE_Client.ocx
OPC Alarms & Events Client Control Description

The following properties and methods define the operating characteristics of the AE_Client Control:

Basic Subscription Methods

NumberOfAEServers ()
Allows the application to determine the number of OPC A&E Servers installed on the local or remote machine.

AEServerName ()
Iterates through the list of servers derived from NumberOfAEServers().

ConnectToAEServer ()
Establishes a connection to an OPC Alarms & Events Server

CreateAESubscription ()
Creates a subscription to a connected server. The subscription enables the server to begin sending Alarms & Event messages to the application.

DisconnectFromAEServer ()
Disconnects from the server.

Events

AEEventNotification
This event is posted to the application whenever the control receives a message from a connected server. Arguments within the event define teh subscription handle as well as the number of messages contained within the event.:

Event Message Methods

Please refer to the OPC Alarms & Events Specification for a detailed description of each of these parameters used to define a message received from the server

EventChangeMask ()
Returns the ChangeMask associated with the event message. The ChangeMask indicates to the client which properties of the condition have changed, to have caused the server to send the event notification.

EventNewState ()
The NewState parameter of the message indicates the new state of the condition. This indicates the new values for the Enabled, Active, and Acked properties of the condition.

EventSource ()
Source is a reference to the object which generated the event notification

EventTime ()
The time that the event occurred.

EventMessage ()
This is the text of the message received from the server.

EventType ()
The type of the event, i.e. condition-related, tracking-related, or simple

EventCategory ()
The category to which this event belongs.

EventSeverity ()
The urgency of the event.

EventConditionName()
The name of the associated OPCCondition.

EventSubCondition ()
The name of the currently active OPCSubCondition

EventQuality)
Indicates the quality of the underlying data items upon which this condition is based.

EventAckRequired ()
An indicator as to whether or not an acknowledgement is required

EventActiveTime ()
The time of the transition into the condition or sub-condition which is associated with this event notification.

EventCookie()
Server defined cookie associated with the event notification. This value is used by the client when acknowledging the condition.

Refresh & Acknowledgement Methods

RefreshSubscription ()
The client can obtain the current state of all conditions which are active, or which are inactive but unacknowledged, by requesting a “refresh”.

AckCondition()
Method used to acknowledge a condition in the server.

Methods to Obtain Characteristics of A&E Server

These methods allow the client to query the connected server to determine certain operating characteristics.

FilterByEvent ()
Returns TRUE if the Server supports filtering events by Type.

FilterByCategory ()
Returns TRUE if the Server supports filtering events by Category.

FilterBySeverity ()
Returns TRUE if the Server supports filtering events by Severity.

FilterByArea ()
Returns TRUE if the Server supports filtering events by Area.

FilterBySource ()
Returns TRUE if the Server supports filtering events by Source.

NumberOfCategories ()
Returns the number of categories defined within the A&E Server

CategoryID ()
Returns the Id of the specified category.

CategoryDescription ()
Returns the name of the specified category.

NumberOfConditionNames()
Returns the number of ConditionNames defined within the server.

ConditionName ()
Returns the name of the specified condition.

NumberOfSubConditionNames ()
Returns the number of SubConditions defined for a condition.

SubConditionName ()
Returns the SubCondition name.

Filter Methods

(Read)

If the A&E Server supports filtering, the client can determine which event messages it receives

GetFilter ()
Obtains the current Filter Specification for a subscripotion.

FilterEventType ()
Returns the event type for the specified filter. This parameter determines which event types are of allowed through the filter

FiltterLowSeverity ()
Returns the Low Severity setting for the specified filter.

FilterHighSeverity ()
Returns the High Severity setting for the specified filter.

NumberOfFilterCategories ()
Returns the number of categories contained within teh specified filter.

FilterCategoryID ()
Returns the id of a category defined within the filter

NumberOfFilterAreas ()
Returns the number of Areas defined within the filter..

FilterArea ()
Returns the name of an area from the filter.

NumberOfFilterSources ()
Returns the number of Sources defined within the filter..

FilterSource ()
Returns the source name from the filter.

Filter Methods

(Write)

The following methods allow the client application to define and write a filter specification to the server for a subscription. All modifications to the filter are made locally within the AE_Client control and will have no effect until sent to the actual connected server via the SetFilter method.

SetFilterEventType ()
Sets the EventType for the specified Filter.

SetFilterLowSeverity ()
Sets the Low Severity parameter for the filter.

SetFiltterHighSeverity ()
Sets the High Severity parameter for the filter.

AddCategoryToFilter ()
Adds a category Id to the filter.

RemoveCategoryFromFilter ()
Removes a Category Id from the specified filter.

AddAreaToFilter ()
Adds an Area Name to the Filter Area List.

RemoveAreaFromFilter ()
Removes the specified Area from the filter

AddSourceToFilter ()
Adds a Source Name to the filter Source List.

RemoveSourceFromFilter ()
Removes the Source from the filter.

SetFilter ()
Sends the specified filter structure to the Server.

AE_Client API Reference

Long NumberOfAEServers (String MachineName)

Example:

MachineName = "" 'set to "127.0.0.1" to test dcom link to loopback address

NumberOfServers = AE_Client1.NumberOfAEServers(MachineName)

(Obtain number of A&E Servers on the local machine)

The NumberOfAEServers() function obtains the number of A&E Servers currently installed on a local or remote machine. The single string argument defines the machine name or IP address. The list of servers is obtained using the OPCENUM component supplied by the OPC Foundation and OPCENUM must be properly installed on both the local and remote machine in order for the AE_Client to be able to locate the server list. After the number of A&E Servers has been obtained for a machine, the application may iterate through the server list by calling the following function:

String AEServerName (Long Index)

Example:

For i = 0 To NumberOfServers

 ServerName.(i) = AE_Client1.AEServerName(i)

 Next i

(Get the list of A&E Server Names)

AEServerName() simply returns a string defining each A&E Server from the list obtained with the NumberOfAEServers function.

Long ConnectToAEServer (String SvrName)

Example:

ConnectionHandle = AE_Client1.ConnectToAEServer (ServerName(0))

(Connect to the first server from the list)

This method attempts to establish an OPC connection to the defined A&E Server. If successful, a valid handle is returned to identify the connection. The application may open multiple connections if required. ConnectToAEServer() returns INVALID_HANDLE_VALUE (-1) if the connection could not be established..

BOOL CreateAESubscription (Long ConnectionHandle,

Long SubscriptionHandle,

Long FAR* BufferTime,

Long FAR* MaxSize)

Example:

 SubscriptionBufferTime = 0

 SubscriptionMaxSize = 1

 SubscriptionHandle = AE_Client1.CreateAESubscription (ConnectionHandle, 1,

SubscriptionBufferTime, SubscriptionMaxSize)

(Create A&E Message subscription for the defined connection)

This method creates an event message subscription for the connection. The buffer time parameter is specified in milliseconds and tells the server how often to send event notifications. This is a minimum time - do not send event notifications any faster that this UNLESS dwMaxSize is greater than 0, in which case the server will send an event notification sooner to obey the dwMaxSize parameter. A value of 0 for dwBufferTime means that the server should send event notifications as soon as it gets them.

The SubscriptionMaxSize parametr is the requested maximum number of events that will be sent in a single AEEventNotification. A value of 0 means that there is no limit to the number of events that will be sent in a single callback..

.

These parameters are used to improve communications efficiency between client and server. Thess parameters are recommendations from the client, and the server is allowed to ignore them. In this case, the SubscriptionBufferTime parameter and SubscriptionMaxSize parameter will be modified by the control to reflect the actual values being provided by the server.

void DisconnectFromAEServer (Long ConnectionHandle)

Example:

AE_Client1.DisconnectFromAEServer (ConnectionHandle)

(Disconnect from specified server)

This method simply disconnects from the defined A&E Server.

The following methods allow the application to obtain data from an event message posted by a connected A&E Server. When an event message is received by the AE_Client control for an active subscription, the control will post the AEEventNotification event. The application may then read the values for specific data contained within the message by calling the following functions. Since multiple event messages may be received from the server within a single event, the values are indexed. An argument contained within the AEEventNotification event defines the total number of event messages available. Please refer to the ONEVENTSTRUCT defined within the OPC Alarms & Events specification for a detailed description of each data value.

short EventChangeMask(long Index)

short EventNewState(long Index)

String EventSource(long Index)

DATE EventTime(long Index)

String EventMessage(long Index)

long EventType(long Index)

long EventCategory(long Index)

long EventSeverity(long Index)

String EventConditionName(long Index)

String EventSubCondition(long Index)

short EventQuality(long Index)

BOOL EventAckRequired(long Index)

DATE EventActiveTime(long Index)

long EventCookie(long Index)

Example:

Private Sub AE_Client1_AEEventsNotfication (ByVal SubscriptionHandle As Long,

 ByVal NumberOfEvents As Long)

For i = 0 To NumberOfEvents - 1

 ChangeMask = AE_Client1.EventChangeMask(i)

 NewState = AE_Client1.EventNewState(i)

 Source = AE_Client1.EventSource(i)

 TimeStamp = AE_Client1.EventTime(i)

 Message = AE_Client1.EventMessage(i)

 EventType = AE_Client1.EventType(i)

 EventCategory = AE_Client1.EventCategory(i)

 Severity = AE_Client1.EventSeverity(i)

 ConditionName = AE_Client1.EventConditionName(i)

 SubConditionName = AE_Client1.EventSubCondition(i)

 Quality = AE_Client1.EventQuality(i)

 AckRequired = AE_Client1.EventAckRequired(i)

 Cookie = AE_Client1.EventCookie(i)

 Msg = TimeStamp

 Msg = Msg + ":" + Source + " " + Message

 EventLst.AddItem Msg

Next i

End Sub

BOOL RefreshSubscription(long hConnect, long hSubscription)

Example:

ErrorReturn = AE_Client1.RefreshSubscription (hConnect, hSubscription)

OPC Clients can obtain the current state of all conditions which are active, or which are inactive but unacknowledged, by requesting a “refresh” from each active OPCEventSubscription object. The server will respond by sending the appropriate events to the client, via the event call back mechanism,

BOOL AckCondition(long hConnect, String AcknowledgerID, String Comment, String Source, String ConditionName, DATE ActiveTime, long Cookie)

Example:

ErrorReturn = AE_Client1.AckCondition (hConnect, MyId, MyComment, Source, Condition, Time, Cookie)

The client uses the AckCondition method to acknowledge a condition in the Event Server. The client receives event notifications from conditions via the AEEventNotification event. This AckCondition method specifically acknowledges the condition becoming active or transitioning into a different sub-condition..

The following methods allow the application to obtain specific operating characteristics for a connected A&E server.
BOOL FilterByEvent(long hConnect)

BOOL FilterByCategory(long hConnect)

BOOL FilterBySeverity(long hConnect)

BOOL FilterByArea(long hConnect)

BOOL FilterBySource(long hConnect)

These methods return TRUE if the designated server supports filtering by event, by category, by severity, by area, or by source. The application may use this information when specifying a filter for a subscription.

long NumberOfCategories(long hConnect, long EventType)

long CategoryID(long Index)

String CategoryDescription(long Index)

If the server supports filtering by categories, the application may retrieve the list of category Id’s and descriptions.

long NumberOfConditionNames(long hConnect, long CategoryID)

String ConditionName(long Index)

long NumberOfSubConditionNames(long hConnect, BSTR FAR* pConditionName)

String SubConditionName(long Index)

Likewise, the list of condition and sub-condition names supplied by the server may be retrieved.

The AE_Client control maintains a local filter specification for each active subscription. This local data structure may be initialized by the application by issuing the GetFilter() method to retrieve the information from the attached server. The application may read and write various properties of the filter to specify the event messages of interest. This local copy of the filter has no effect on the operation of the subscription until the application specifically .updates the server by using the SetFilter() method.

long GetFilter(long hConnect, long hSubscription)

If the operation is successful, GetFilter() will return a zero error code. The application may then examine the contents of the filter by using the following methods:

long FilterEventType(long hFilter)

long NumberOfFilterCategories(long hFilter)

long FilterLowSeverity(long hFilter)

long FilterHighSeverity(long hFilter)

long NumberOfFilterAreas(long hFilter)

BSTR FilterArea(long hFilter, long Index)

long FilterCategoryID(long hFilter, long Index)

long NumberOfFilterSources(long hFilter)

BSTR FilterSource(long hFilter, long Index)

The following methods allow the application to make modifications to the local copy of the filter:

BOOL SetFilterEventType(long hFilter, long EventType)

BOOL SetFilterLowSeverity(long hFilter, long LowSeverity)

BOOL SetFilterHighSeverity(long hFilter, long HighSeverity)

BOOL AddCategoryToFilter(long hFilter, long CatID)

BOOL RemoveCategoryFromFilter(long hFilter, long CatID)

BOOL AddAreaToFilter(long hFilter, BSTR FAR* AreaDescrip)

BOOL RemoveAreaFromFilter(long hFilter, BSTR FAR* AreaDescrip)

BOOL AddSourceToFilter(long hFilter, BSTR FAR* SourceDescrip)

BOOL RemoveSourceFromFilter(long hFilter, BSTR FAR* SourceDescrip)

When all modifications to the filter have been made, the application may send the filter to the server to change the behavior of the subscription.

BOOL SetFilter(long hConnect, long hSubscription, long hFilter)

Visual Basic Example

‘

‘ Declarations

‘

Public hConnect As Long

Public hSubscription As Long

Public ServerName As String

Public Msg As String

‘

‘ When the form loads, read the list of A&E Servers from the local machine

‘ and update the Server List control

‘

Private Sub Form_Load()

Dim MachineName As String

hConnect = -1

hSubscription = -1

ConnectButton.Enabled = False

DisconnectButton.Enabled = False

MachineName = "" 'set to "127.0.0.1" to test dcom link to loopback address

NumberOfServers = AE_Client1.NumberOfAEServers(MachineName)

For i = 0 To NumberOfServers

 ServerList.AddItem AE_Client1.AEServerName(i)

 Next i

End Sub

‘

‘ When the user clicks on a server name

‘ enable the “CONNECT” button

‘

Private Sub ServerList_Click()

 ServerName = ServerList.List(ServerList.ListIndex)

 ConnectButton.Enabled = True

End Sub

‘

‘ When the user clicks the “CONNECT” button

‘ attempt to establish a connection to the selected server

‘ and set up a subscription

‘

Private Sub ConnectButton_Click()

Dim SubscriptionBufferTime As Long

Dim SubscriptionMaxSize As Long

 hConnect = AE_Client1.ConnectToAEServer(ServerName)

 If (hConnect = -1) Then

 Return

 End If

 SubscriptionBufferTime = 0

 SubscriptionMaxSize = 1

 hSubscription = AE_Client1.CreateAESubscription(hConnect, 1, SubscriptionBufferTime, SubscriptionMaxSize)

 DisconnectButton.Enabled = True

 ConnectButton.Enabled = False

End Sub

‘

‘ Disconnect from the server on command

‘

Private Sub DisconnectButton_Click()

 AE_Client1.DisconnectFromAEServer (hConnect)

 hConnect = -1

 hSubscription = -1

 ConnectButton.Enabled = True

 DisconnectButton.Enabled = False

End Sub

‘

‘ Whan an event message is received from the connected server

‘ read the data values from the ONEVENTSTRUCT and display the

‘ event message to the form.

‘

Private Sub AE_Client1_AEEventsNotfication(ByVal SubscriptionHandle As Long, ByVal NumberOfEvents As Long)

Dim ChangeMask As Integer

Dim NewState As Integer

Dim Source As String

Dim TimeStamp As Date

Dim Message As String

Dim EventType As Long

Dim EventCategory As Long

Dim Severity As Long

Dim ConditionName As String

Dim SubConditionName As String

Dim Quality As Integer

Dim AckRequired As Boolean

Dim ActiveTime As Date

Dim Cookie As Long

For i = 0 To NumberOfEvents - 1

 ChangeMask = AE_Client1.EventChangeMask(i)

 NewState = AE_Client1.EventNewState(i)

 Source = AE_Client1.EventSource(i)

 TimeStamp = AE_Client1.EventTime(i)

 Message = AE_Client1.EventMessage(i)

 EventType = AE_Client1.EventType(i)

 EventCategory = AE_Client1.EventCategory(i)

 Severity = AE_Client1.EventSeverity(i)

 ConditionName = AE_Client1.EventConditionName(i)

 SubConditionName = AE_Client1.EventSubCondition(i)

 Quality = AE_Client1.EventQuality(i)

 AckRequired = AE_Client1.EventAckRequired(i)

 Cookie = AE_Client1.EventCookie(i)

 Msg = TimeStamp

 Msg = Msg + ":" + Source + " " + Message

 EventLst.AddItem Msg

Next i

End Sub

PAGE
14

