WtHDASvr DLL User’s Guide

The WinTECH Software Rapid Development DLL for OPC HDA Servers, (WtHDAsvr), provides an easy to use API for integrating custom historical data with OPC. All the details of COM and OPC are handled by the DLL, which allows an application to present data points to OPC at a high-level, without having to be concerned with the actual implementation of the underlying interfaces. The DLL may be easily integrated with existing applications, or new ones. All required OPC HDA Interfaces are supported to allow client applications to browse and read available data items from the historian application. The DLL also supports many of the optional HDA Interfaces that allow a client to establish an Advise connection to receive data as it changes and to read Aggregate values from the server.

Creating a Custom OPC HDA Server using WtHDAsvr.DLL

Installing the OPC Proxy DLL’s

The first step in creating an OPC Server is to obtain and install the OPC Proxy/Stub DLL’s from OPCFoundation (http://www.opcfoundation.org)

· Download and upzip the proxy/stub files.

· Copy opccomn_ps.dll, opcproxy.dll, opcae_ps.dll, opchda_ps.dll to the SYSTEM32 Directory. *Be sure not to overwrite any newer versions*

· Type REGSVR32 opccomn_ps.dll

· Type REGSVR32 opcproxy.dll

· Type REGSVR32 opc_aeps.dll

· Type REGSVR32 opchda_ps.dll

You will also need to download and install the OPC Server Browser Object supplied by the OPC Foundation. The OPC Foundation also advises that you verify that your system contains the actxprxy.dll and if not, install the ActiveX Redistributable Installation Kit from Microsoft. The aprxdist.zip file containing the Microsoft software is also available from the OPC Foundation Web-Site.

Link WtHDAsvr.lib with your Application

WtHDAsvr.lib contains the export definitions for the DLL’s API. Include this file with the project files for the custom application and include WtHDAsvrAPI.h with those modules which will be making calls into the DLL.

Generate a new CLSID
Each OPC Server is identified by a unique CLSID. The GUIDGen.exe utility supplied by Microsoft may be used to generate a unique identifier for the new server application. Run GUIDGen.exe, (located in the Visual C++\Bin directory). Generate a new CLSID and copy to the clipboard to be pasted in to your server application as described below.

Registry Entries

The WtHDAsvr.DLL exports two API functions that make modifications to the Windows Registry for installation of the custom server.

 HDAUpdateRegistry (GUID CLSID_Svr, LPCSTR name, LPCSTR descr, LPCSTR exepath);

 UnregisterHDAServer (GUID CLSID_Svr, LPCSTR Name);

These functions take as arguments the CLSID generated above, (as well as text strings to identify and describe the new server). While the HDAUpdateRegistry and UnregisterHDAServer functions may be called from the controlling application at any time, it is generally preferred to implement the registry functions based on command-line entries during start-up of the application. A self-registering server would process the \RegServer and \UnregServer command line options similar to the code below:

const GUID

CLSID_HDASimSvr = {0x99b8f471, 0xc027, 0x11d2, {0x80, 0xb8, 0x0, 0x60, 0x97, 0x58, 0x58, 0xbe}};

BOOL CHDASimSvrApp::InitInstance()

{

TCHAR
szTokens[] = _T("-/ ");

CString HelpPath;

CString
SvrName, SvrDescrip;

int
i;

HelpPath = AfxGetApp()->m_pszHelpFilePath;

i = HelpPath.ReverseFind('\\');

HelpPath = HelpPath.Left(i+1);

HelpPath += "HDASIMSVR.EXE";

//

// Self-Registration code

// (look for cmdline options to register & unregister server)

//

SvrName = "WinTECH.OPC HDA Server";

SvrDescrip = "WinTECH Software OPC HDA Server Simulator";

CString tempCmdLine(m_lpCmdLine);

LPTSTR lpszToken = _tcstok(tempCmdLine.GetBuffer(1), szTokens);

while (lpszToken != NULL)

{

if (_tcsicmp(lpszToken, _T("UnregServer"))==0)

{

UnregisterHDAServer (CLSID_HDASimSvr, SvrName);

return (FALSE);

}

else if (_tcsicmp(lpszToken, _T("RegServer"))==0)

{

HDAUpdateRegistry (CLSID_HDASimSvr,

SvrName,

SvrDescrip,

HelpPath);

return (FALSE);

}

lpszToken = _tcstok(NULL, szTokens);

}

Initialization of WtHDAsvr.DLL

The Windows Registration functions described above may be called prior to the initialization of the WtHDAsvr.DLL. During the self-registration process, the focus is on making the necessary changes to the Registry and then exiting the application. There is no need at this point to go through the effort of initializing DCOM and loading up the OPC HDA Server support. The exported function:

 InitWtHDAsvr (GUID CLSID_Svr, UINT ServerRate);

does just that. When this function is executed, the DLL performs all necessary initialization of COM/DCOM and creates the HDAServer Interface object to be used for client connections. The specified ServerRate defines how fast asynchronous requests are serviced from a client connection. A ServerRate of 1000 sets up a one second timer loop within the DLL to check for and make replies o AsyncRead requests made by an attached client.

Creating HDA Item Tags, Attributes and Aggregates

After initialization, the WtHDAsvr.DLL is now ready to accept connections from prospective HDA clients.

However, before the DLL can provide access to data contained within the server application, it must be configured with a description of the data available. Three exported functions are provided to allow the application to define the available data points, attributes and aggregates supported by the server.

 DefineHDAItem (LPCSTR Name);

DefineHDAAttribute (DWORD Id, LPCSTR Name, LPCSTR Descr, VARTYPE vt, BOOL IsArchived);

DefineHDAAggregate (DWORD Id, LPCSTR Name, LPCSTR Descr);

Item names are used by the WtHDAsvr.dll to support browsing operations by prospective clients. As each item is defined, the dll will return a HANDLE which must be maintained by the application for future reference to define the item. The DLL supports either a flat or hierarchical name space. The application may define item names using the '.' delimiter.

Attributes and Aggregates, (if supported by the server application), must be defined using the appropriate API function. If an attribute is archived along with each data item, a client may request the attribute value for any given time period. The OPC HDA Specification defines the IDs for certain attributes and aggregates that are reserved, (see Appendix 1). A server may define additional attributes and aggregates as required.

Callback Object

The WtHDAsvr.DLL uses a callback object to read data from the application when requested by an attached client. The server application must define its instance of the callback object to provide the link between its database and client connections operating within the DLL.

 SetHDAServerCallback (CWtHDACallback *pCallback);

 Overloaded functions must be defined for the callback object to allow the DLL to determine the number of data items and associated timestamps for an archived data item and to read the data, attributes, and calculated data from the server. (Refer to the code within hdatest1 example application for details.)

GetTimeStamps (HANDLE hItem, FILETIME *pStart, FILETIME *pEnd, int NumValues,

FILETIME *pTimes, DWORD *pKey);

GetPreviousTimeStamp (HANDLE hItem, FILETIME Time, FILETIME *pTimeStamp,

DWORD Key);

GetNextTimeStamp (HANDLE hItem, FILETIME Time, FILETIME *pTimeStamp,

DWORD Key);

 ReadAt (HANDLE hItem, FILETIME TimeStamp, VARIANT *pValue, DWORD *pQuality,

DWORD Key);

ReadCurrentAttribute (HANDLE hItem, DWORD AttributeID, FILETIME *pTime,

VARIANT *pValue);

 ReadAttributeAt (HANDLE hItem, DWORD AttributeID, FILETIME TimeStamp,

VARIANT *pValue, DWORD Key);

 PrepareAggregates (HANDLE hItem, DWORD AggregateID, FILETIME StartTime,

FILETIME EndTime, FILETIME ReSampleInterval,

DWORD *pKey);

 ReadProcessed (HANDLE hItem, DWORD AggregateID, FILETIME *pStart,

FILETIME *pEnd, VARIANT *pValue, DWORD *pQuality,

DWORD Key);

Using Individual Callbacks rather than CWtHDACallback

To support Visual Basic and other application development systems that do not allow you to overload the CWtHDACallback object, the WtHDAsvr dll provides the ability to use individual callbacks for the eight functions defined within CWtHDACallback. In this case, the application would not make a call to SetHDAServerCallback() but would call each of the following exports to enable the callback for each individual function.

EnableGetTimeStampCallback (TIMESTAMPPROC lpCallback);

EnableGetPreviousTimeStampCallback (PREVTIMESTAMPPROC lpCallback);

EnableGetNextTimeStampCallback (NEXTTIMESTAMPPROC lpCallback);

EnableReadAtCallback (READATPROC lpCallback);

EnableReadCurrentAttributeCallback (CURRENTATTRIBUTEPROC lpCallback);

EnableReadAttributeAtCallback (READATTRIBUTEPROC lpCallback);

EnablePrepareAggregatesCallback (PREPAREAGGREGATESPROC lpCallback);

EnableReadProcessedCallback (READPROCESSEDPROC lpCallback);

The eight callback functions are defined as follows :

TIMESTAMPPROC (HANDLE hItem, FILETIME *pStart, FILETIME *pEnd, int MaxValues,

FILETIME *pTimes, DWORD *pNumberOfValues)

PREVTIMESTAMPPROC (HANDLE hItem, FILETIME Time, FILETIME *pTimeStamp,

DWORD *phResult)

NEXTTIMESTAMPPROC (HANDLE hItem, FILETIME Time, FILETIME *pTimeStamp,

DWORD
*phResult)

READATPROC (HANDLE hItem, FILETIME TimeStamp, VARIANT *pValue, DWORD

*pQuality, DWORD
*phResult)

CURRENTATTRIBUTEPROC (HANDLE hItem, DWORD AttributeID, FILETIME *pTime,

VARIANT *pValue, DWORD *phResult)

READATTRIBUTEPROC (HANDLE hItem, DWORD AttributeID, FILETIME TimeStamp,

VARIANT *pValue, DWORD *phResult)

PREPAREAGGREGATESPROC (HANDLE hItem, DWORD AggregateID, FILETIME

StartTime, FILETIME EndTime, FILETIME ReSampleInterval, DWORD *pNumberOfValues)

READPROCESSEDPROC (HANDLE hItem, DWORD AggregateID, FILETIME *pStart,

FILETIME *pEnd, VARIANT *pValue, DWORD *pQuality, DWORD *phResult)

The functionality of these callbacks is identical to the corresponding overloaded functions in the CWtHDACallback object. The application must supply the return value in the supplied hResult or pNumberOfValues parameter Please refer to the VBDemo application contained with the distribution file set for programming details of each function.

WtHDAsvr.DLL Exported functions

BOOL InitWtHDAsvr (GUID CLSID_Svr, UINT ServerRate);

Use this function to initialize DCOM and create the OPC Server.

CLSID_Svr defines the CLSID which HDA Clients will use to connect to this server.

ServerRate is expressed in msecs and defines the rate at which client asynchronous requests are processed.

The return value will be TRUE if the function succeeds, otherwise FALSE.

BOOL HDAUpdateRegistry (GUID CLSID_Svr, LPCSTR name, LPCSTR descr, LPCSTR exepath);
This function makes modifications to the Windows Registry to allow other applications to find and execute the server.

CLSID_Svr defines the CLSID which HDA Clients will use to connect to this server.

Name defines the Server Name

Descr may be anything to describe the server, and will usually contain the vendor name.

ExePath defines the full Windows Directory path to the executable (i.e. c:\OPC\test\mysvr.exe).

The return value will be TRUE if the function succeeds, otherwise FALSE.

BOOL UnregisterHDAServer (GUID CLSID_Svr, LPCSTR Name);

This function removes entries from the Windows Registry.

CLSID_Svr defines the CLSID which HDA Clients will use to connect to this server.

Name defines the Server Name

The return value will be TRUE if the function succeeds, otherwise FALSE.

BOOL SetHDAVendorInfo (LPCSTR VendorInfoString);

The application may set the vendor information description that is returned by the server in response to a client request for Server Information..

The return value will be TRUE if the function succeeds, otherwise FALSE.

BOOL EnableHDADisconnectNotification (DISCONNECTPROC lpCallback);

This function defines the callback routine which receives control from the WtHDASvr.DLL whenever an OPC Client application disconnects.

lpCallback points to a routine defined such as the following:

void CALLBACK EXPORT DisconnectHandler (DWORD Numbr)

Numbr defines the the number of client connections remaining.

int NumbrHDAClientConnections ();

This function returns the number of OPC Clients currently connected to WtHDAsvr.dll

void RequestHDADisconnect ();

This function requests that all HDA Clients disconnect from the server. This function does not guarantee that the request will be honored, or that the clients will actually disconnect.

HANDLE DefineHDAItem (LPCSTR Name);

This function creates an item reference between the server application and the WtHDAsvr.dll.

Name defines the identifier that OPC Clients will use to access the tag. This name may be any string of text as required by the server. Segmented names, (those containing the delimiter character ‘.’), are valid and will cause WtHDAsvr.DLL to structure the OPC name space as hierarchial, for browsing operations.

The return value will be a HANDLE to the created point or INVALID_HANDLE_VALUE if the reference could not be created.

BOOL DefineHDAAttribute (DWORD Id, LPCSTR Name, LPCSTR Descr, VARTYPE vt, BOOL IsArchived);

This function allows the controlling application to define an attribute to be associated with an archived data item. Support for attributes is optional.

Id defines the attribute, and will be referenced by clients desiring the read the attribute value. The Id may represent an attribute type as defined by the OPC HDA Specification or one unique to this particular server.

Name and Descr provide additional textual descriptions of the attribute.

vt representes the data type for the attribute.

IsArchived indicates whether or not the attribute is archived along with the data item or only available to the client as a "current value".

The terurn value will be TRUE if the attribute description could be successfully added to the DLL's attribute list.

.

BOOL DefineHDAAggregate (DWORD Id, LPCSTR Name, LPCSTR Descr);

This function allows the controlling application to define an aggregate to be associated with an archived data item. Support for aggregates is optional.

Id defines the aggregate, and will be referenced by clients desiring the read processed, (calculated), values from the server. The Id may represent an aggregate type as defined by the OPC HDA Specification or one unique to this particular server.

Name and Descr provide additional textual descriptions of the aggregate.

BOOL SetHDAServerCallback (CWtHDACallback *pCallback);

This function defines the main callback object used by the dll to link data from the application to prospective HDA clients. CWtHDACallback is a C++ object definition that allows the application to override certain methods to provide access to its data. The following functions may be defined by your instance of CWtHDACallback:

Archived Data Item functions

virtual int GetTimeStamps (HANDLE hItem, FILETIME *pStart, FILETIME *pEnd,

int NumValues, FILETIME *pTimes,

DWORD *pKey);

GetTimeStamps allows the DLL to retrieve a list of all the TimeStamps available

in the application database between the specified Start & End times.

hItem identifies the item of interest.

pStart identifies the start of the time interval. As per the HDA spec, the Start time may be greater than the End time, in which case TimeStamps must be returned in reverse order.

pEnd identifies the end of the time period. If the End time is not specified, (pEnd == NULL),

the application must use the Start time and NumValues to fill the TimeStamp array..

NumValues specifies the maximum number of item timestamps that may be returned. If more data items exist in the specified time range than can be filled in the allocated array the application should return NumValues. The DLL will check for the OPC_S_MOREDATA.

condition by making a call to GetNextTimeStamp or GetPreviousTimeStamp to see if additional data exists within the specified time span. NumValues may be zero, (see pTimes below).
pTimes points to an array of FILETIMES of length NumValues allocated by the dll and filled by the application. The application needs to verify that pTimes is not NULL. If the client request specifies NumValues == 0, it indicates ALL VALUES between the specified start & end times. In this case, the WtHDAsvr dll will make two calls to the GetTimeStamps function. The first call will have the pTimes buffer set to NULL with NumValues set to 0. The application should return the number of values without trying to fill the pTimes buffer. The WtHDAsvr dll will then allocate the pTimes buffer and make a second call to GetTimeStamps to allow the application to return the timestamps.
pKey points to a user supplied variable supplied by the dll to synchronize further calls to

GetPreviousTimeStamp, GetNextTimeStamp, and ReadAt. When the WtHDAsvr.dll first attempts to read a data set, it will pass a pointer to the session key via GetTimeStamps. The

application may then prepare the data set and return a unique identifier to the dll

which will be included in subsequent calls to read the data.

virtual HRESULT GetPreviousTimeStamp (HANDLE hItem, FILETIME Time,

FILETIME *pTimeStamp, DWORD Key);

virtual HRESULT GetNextTimeStamp (HANDLE hItem, FILETIME Time,

FILETIME *pTimeStamp, DWORD Key);

GetPreviousTimeStamp and GetNextTimeStamp allows the DLL to retrieve the HDA Bounding value for a time period as requested by a client. The application should return the

Timestamp of the historized item immediately prior to or immediately following the

specified FILETIME.

virtual HRESULT ReadAt (HANDLE hItem, FILETIME TimeStamp,

VARIANT *pValue, DWORD *pQuality, DWORD Key);

ReadAt is used by the DLL to obtain the value and quality of an item at a specified time. Generally, the requested timestamp will have been obtained by a previous call to GetTimeStamps, however, the HDA spec allows a client to request the value of an item at any given time. In this case, the application should extrapolate the value for the item based on the surrounding data points and return OPCHDA_INTERPOLATED. If the requested timestamp is out of bounds of the database, the application should return OPC_S_NODATA.

Attribute functions

virtual HRESULT ReadCurrentAttribute (HANDLE hItem, DWORD AttributeID,

FILETIME *pTime, VARIANT *pValue);

virtual HRESULT ReadAttributeAt (HANDLE hItem, DWORD AttributeID,

FILETIME TimeStamp, VARIANT *pValue);

When the application starts up, it specifies the attributes supported for the historized data items. It also specifies, for each attribute, whether or not the attribute is histroized along with the item. The following two functions allow the dll to read the current value of an attribute for a given item and, if supported), the value for an attribute at a specifiied point in time.

Processed Item functions

virtual int PrepareAggregates (HANDLE hItem, DWORD AggregateID,

FILETIME *pStart, FILETIME *pEnd,

FILETIME ReSampleInterval, DWORD *pKey);

PrepareAggregate allows the application knowledge concerning a client request to read aggregate values over a specified time span. PrepareAggregates will be followed by x number of calls to ReadProcessed() to obtain the calculated values for each ReSampleInterval contained within the time sapn.

virtual HRESULT ReadProcessed (HANDLE hItem, DWORD AggregateID,

FILETIME *pStart, FILETIME *pEnd, VARIANT *pValue,

WORD *pQuality, DWORD Key);

The ReadProcessed function allows the DLL to read a value from the application database that is calculated over a specified time range. The calculation to be performed on the data set is defined by AggregateID. The server application defines the list of supported Aggregates during start-up.

HDATest1 MFC Example

The HDATest1 application was designed to demonstrate how an OPC HDA Server may be assembled using the WtHDAsvr dll. HDATest1 was built using MSDEV Version 6.0. All project and resource files are contained in the distribution file HDA_Test.zip.

This simple application uses the standard MFC framework, (Application/Document/View), architecture generated by the Microsoft development platform for a single-document interface. All custom logic to interface with the WtHDAsvr dll has been added to HDATest1View.cpp. For demonstration purposes, menu options are included which Register and Unregister the server, instead of the preferred method of processing command line options during self-registration.

The test application is divided into two splitter windows, the bottom of which will display event notification messages as received from the dll. When the HDATest1View window is created, (OnCreate), the WtHDAsvr

dll is initialized, and definitions supplied for items, attributes and aggregates. The test application simulates values by returning random numbers in response to queries from the dll. The simulated database is designed to represent historical values collected on each even quarter minute interval, (every 15 secs). There is no attempt to maintain consistency between the value returned for any given point in time. A random number will be returned for each read. This simulation will not be directly applicable to any given HDA server application, but is only intended to demonstrate how an application could interact with the WtHDAsvr.dll to supply real historical data on demand.

 Appendix 1.

The following excerpts are from the OPC HDA Specification and list the pre-defined Attribute ID's and

Aggregate ID's that a server may choose to support.

1.1. OPCHDA ITEM ATTRIBUTES

This indicates the attribute IDs for the history data. The precise meaning of each attribute may be server specific. Attributes not supported by the server shall return OPC_E_INVALIDATTRID in the error code for that attribute. Additional attributes may be defined by vendors. Server specific attributes must be defined with values beginning at 0x80000000. The OPC foundation reserves all attribute IDs from 0 to 0x7fffffff.

The OPCHDAServer::GetAttributes method shall return the attributes supported by the server, with a AttributeID, AttributeName, AttributeDescription, and AttributeDataType for each property. The AttributeDataType is included to enable the client to specify filter values when browsing the server's ItemIds.

General attributes:

AttrID
Description
Data Type
Value

xe "IP_TAG_TYPE"OPCHDA_DATA_TYPE
Specifies the data type for the item. See the definition of a VARIANT for valid values (VT_R4, etc.)
VT_I2
0x01

xe "IP_DESCRIPTION"OPCHDA_DESCRIPTION
Describes the item.
VT_BSTR
0x02

xe "IP_ENG_UNITS"OPCHDA_ENG_UNITS
Specifies the label to use in displays to define the units for the item (e.g., kg/sec).
VT_BSTR
0x03

xe "IP_STEPPED"OPCHDA_STEPPED
Specifies whether data from the history repository should be displayed as interpolated (sloped lines between points) or stepped (vertically-connected horizontal lines between points) data. Value of 0 indicates interpolated.
VT_BOOL
0x04

xe "IP_ARCHIVING"OPCHDA_ARCHIVING
Indicates whether historian is recording data for this item (0 means no).
VT_BOOL
0x05

xe "IP_DERIVE_EQUATION"OPCHDA_DERIVE_EQUATION
Specifies the equation to be used by a derived item to calculate its value. This is a free-form string.
VT_BSTR
0x06

xe "IP_DCS_NAME"OPCHDA_NODE_NAME
Specifies the machine which is the source for the item. This is intended to be the broadest category for defining sources. For an OPC Data Access Server source, this is the nodename or IP address of the server. For non-OPC sources, the meaning of this field is server-specific.
VT_BSTR
0x07

xe "IP_DCS_NAME"OPCHDA_PROCESS_NAME
Specifies the process which is the source for the item. This is intended to the second-broadest category for defining sources. For an OPC DA server, this would be the registered server name. For non-OPC sources, the meaning of this field is server-specific.
VT_BSTR
0x08

xe "IP_DCS_NAME"OPCHDA_SOURCE_NAME
Specifies the name of the item on the source. For an OPC DA server, this is the ItemID. For non-OPC sources, the meaning of this field is server-specific.
VT_BSTR
0x09

xe "IP_DCS_TYPE"OPCHDA_SOURCE_TYPE
Specifies what sort of source produces the data for the item. For an OPC DA server, this would be "OPC". For non-OPC sources, the meaning of this field is server-specific.
VT_BSTR
0x0a

xe "IP_GRAPH_MAXIMUM"OPCHDA_NORMAL_MAXIMUM
Specifies the upper limit for the normal value range for the item. OPCHDA_NORMAL_MAXIMUM is used for trend display default scaling and exception deviation limit calculations.

OPCHDA_ NORMAL _MAXIMUM should be the normal high value for the item.
VT_R8
0x0b

xe "IP_GRAPH_MINIMUM"OPCHDA_NORMAL_MINIMUM
Specifies the lower limit for the normal value range for the item. OPCHDA_ NORMAL _MINIMUM is used for trend display default scaling and exception deviation limit calculations.

OPCHDA_ NORMAL _MINIMUM should be the normal low value for the item.
VT_R8
0x0c

OPCHDA_ITEMID
Specifies the item id. This is used to allow filtering in the CreateBrowse method.
VT_BSTR
0x0d

Attributes which affect how the data is historized:

Attributes
Description
Data Type
Value

xe "IP_DC_MAX_TIME_INT"OPCHDA_MAX_TIME_INT
Specifies the maximum interval between data points in the history repository regardless of their value change.

A new value shall be stored in history whenever OPCHDA_MAX_TIME_INT seconds have passed since the last value stored for the item.
VT_FILETIME
0x0e

xe "IP_DC_MAX_TIME_INT"OPCHDA_MIN_TIME_INT
Specifies the minimum interval between data points in the history repository regardless of their value change.

A new value shall be not be stored in history unless OPCHDA_MIN_TIME_INT seconds have passed since the last value stored for the item.
VT_FILETIME
0x0f

xe "IP_EXCEPTION_DEV_PCT"OPCHDA_EXCEPTION_DEV
Specifies the minimum amount that the data for the item must change in order for the change to be reported to the history database. See OPCHDA_EXCEPTION_DEV_TYPE for the specific meaning of this field.
VT_R8
0x10

xe "IP_EXCEPTION_DEV_PCT"OPCHDA_EXCEPTION_DEV_TYPE
Specifies whether the OPCHDA_EXCEPTION_DEV is given as an absolute value, percent of span, or percent of value. The span is defined as OPCHDA_HIGH_ENTRY_LIMIT - OPCHDA_LOW_ENTRY_LIMIT.
VT_I2
0x11

OPCHDA_HIGH_ENTRY_LIMIT
Specifies the highest valid value for the item. A value for the item that is above OPCHDA_HIGH_ENTRY_LIMIT cannot be entered into history. This is the top of the span.
VT_R8
0x12

OPCHDA_LOW_ENTRY_LIMIT
Specifies the lowest valid value for the item. A value for the item that is below OPCHDA_LOW_ENTRY_LIMIT cannot be entered into history. This is the zero for the span.
VT_R8
0x13

1.1.1. OPCHDA_AGGREGATE

This indicates the aggregate to be used when retrieving processed history. The precise meaning of each aggregate may be server specific. Aggregates not supported by the server shall return OPC_E_INVALIDARG in the error code for that aggregate. Additional aggregates may be defined by vendors. Server specific aggregates must be defined with values beginning at 0x80000000. The OPC foundation reserves all aggregates IDs from 0 to 0x7fffffff.

Aggregate Value
Description

OPCHDA_INTERPOLATED
Do not retrieve an aggregate. This is used for retrieving interpolated values.

OPCHDA_TOTAL
Retrieve the totalized value (time integral) of the data over the resample interval.

OPCHDA_AVERAGE
Retrieve the average data over the resample interval.

OPCHDA_TIMEAVERAGE
Retrieve the time weighted average data over the resample interval.

OPCHDA_COUNT
Retrieve the number of raw values over the resample interval.

OPCHDA_STDEV
Retrieve the standard deviation over the resample interval.

OPCHDA_MINIMUMACTUALTIME
Retrieve the minimum value in the resample interval and the timestamp of the minimum value.

OPCHDA_MINIMUM
Retrieve the minimum value in the resample interval.

OPCHDA_MAXIMUMACTUALTIME
Retrieve the maximum value in the resample interval and the timestamp of the maximum value.

OPCHDA_MAXIMUM
Retrieve the maximum value in the resample interval.

OPCHDA_START
Retrieve the value at the beginning of the resample interval. The time stamp is the time stamp of the beginning of the interval.

OPCHDA_END
Retrieve the value at the end of the resample interval. The time stamp is the time stamp of the end of the interval.

OPCHDA_DELTA
Retrieve the difference between the first and last value in the resample interval.

OPCHDA_REGSLOPE
Retrieve the slope of the regression line over the resample interval.

OPCHDA_REGCONST
Retrieve the intercept of the regression line over the resample interval. This is the value of the regression line at the start of the interval.

OPCHDA_REGDEV
Retrieve the standard deviation of the regression line over the resample interval.

OPCHDA_VARIANCE
Retrieve the variance over the sample interval .

OPCHDA_RANGE
Retrieve the difference between the minimum and maximum value over the sample interval.

OPCHDA_DURATIONGOOD
Retrieve the duration (in seconds) of time in the interval during which the data is good.

OPCHDA_DURATIONBAD
Retrieve the duration (in seconds) of time in the interval during which the data is bad.

OPCHDA_PERCENTGOOD
Retrieve the percent of data (1 equals 100 percent) in the interval which has good quality.

OPCHDA_PERCENTBAD
Retrieve the percent of data (1 equals 100 percent) in the interval which has bad quality.

OPCHDA_WORSTQUALITY
Retrieve the worst quality of data in the interval.

OPCHDA_ANNOTATIONS
Retrieve the number of annotations in the interval.

Comment

The implementation of these aggregate types is server dependent.

Where feasible, such as for interpolated data, maximum, minimum, etc., the data type that the server should return is the type of the originally recorded data. For calculated types the returned data type is double.

All the time stamps returned are based on the aggregate offsets except for those which explicitly state otherwise.

